Locally stationary covariance and signal estimation with macrotiles

نویسندگان

  • David L. Donoho
  • Stéphane Mallat
  • Rainer von Sachs
  • Yann Samuelides
چکیده

A macrotile estimation algorithm is introduced to estimate the covariance of locally stationary processes. A macrotile algorithm uses a penalized method to optimize the partition of the space in orthogonal subspaces, and the estimation is computed with a projection operator. It is implemented by searching for a best basis among a dictionary of orthogonal bases and by constructing an adaptive segmentation of this basis to estimate the covariance coefficients. The macrotile algorithm provides a consistent estimation of the covariance of locally stationary processes, using a dictionary of local cosine bases. This estimation is computed with a fast algorithm. Macrotile algorithms apply to other estimation problems such as the removal of additive noise in signals. This simpler problem is used as an intuitive guide to better understand the case of covariance estimation. Examples of removal of white noise from sounds illustrate the results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Covariance Estimation of Locally Stationary Processes St

2 Locally Stationary Processes 2 2.1 Time-varying spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Locally stationary processes depending on a parameter . . . . . . . . . . . . 7 2.3 Local Cosine Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Pseudo-di erential Covariance Operators . . . . . . . . . . . . . . . . . . . . 11 2.5 Time-Varying Fi...

متن کامل

Estimation of locally stationary covariance matrices from data

Local stationarity of a L(R) bandpass random process reflects in specific regions of either the frequency plane of its 2 dimensional power spectrum or the time-frequency plane of its Wigner distribution. The paper addresses the problem of estimating from data a covariance matrix that satisfies the constraint of being locally stationary. We also show, with a real-data case study, the improvement...

متن کامل

Local likelihood estimation for nonstationary random fields

We develop a weighted local likelihood estimate for the parameters that govern the local spatial dependency of a locally stationary random field. The advantage of this local likelihood estimate is that it smoothly downweights the influence of faraway observations, works for irregular sampling locations, and when designed appropriately, can trade bias and variance for reducing estimation error. ...

متن کامل

Estimating Covariances of Locally Stationary Processes: Consistency of Best Basis Methods

Mallat, Papanicolaou and Zhang 1] have recently suggested a method for approximating the covariance of a locally stationary process by a covariance which is diagonal in an ideally constructed Coifman{Meyer basis of cosine packets 2]. A natural question arising from their work is to translate approximation results into estimation results. In this paper we discuss the problem of estimation of the...

متن کامل

Optimal Time-frequency Kernels for Spectral Estimation of Locally Stationary Processes

This paper investigates the mean square error optimal timefrequency kernel for estimation of the Wigner-Ville spectrum of a certain class of nonstationary processes. The class of locally stationary processes have a simplified covariance structure which facilitates analysis. We give a formula for the optimal kernel in the ambiguity domain and conditions that are sufficient for the optimal time-f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2003